Pyrolytic Graphite (PG) has served an enabling role as an insulator in current and legacy radioisotope power systems in support of the intact reentry design philosophy. ORNL has assessed vendors for LWRHU insulator production.
Graphite is one of the allotropic forms of Carbon

- Pyrolytic Graphite is formed by high temperature decomposition of hydrocarbon gasses onto substrates (usually polycrystalline graphite). PG deposits as basal plane additions within individual grains that become aligned with the deposition surface and each other.

- Consequently, polycrystalline PG components embody the anisotropic properties of PG on a macroscopic scale.
Pyrolytic graphite employed for thermal protection of radioisotope heat sources...

is not Highly Oriented Pyrolytic Graphite (HOPG) used for exotic physics experiments and as a source of graphene

Pyrolytic Graphite of interest is a commercially produced thermal management material employed for a variety of applications, particularly the electronics industry.

Ref: MiNTEQ International
The anisotropic properties of PG are defined by crystal structure with very strong covalent bonds in the basal plane of the hexagonal unit cell and very weak Van der Waals bonding between.

| Thermal Conductivity |
|----------------------|---|
| || Basal Plane | ⊥ Basal Plane |
| ~200 W/mK @ 1600 °C |

| Tensile Strength |
|------------------|---|
| || Basal Plane | ⊥ Basal Plane |
| >100 X |

| CTE |
|-----|---|
| || Basal Plane | ⊥ Basal Plane |
| 30X |
The microstructure of PG nucleates on a substrate at High Temperature (> 1000 °C) and grows as conically shaped grains.

(A) Continuous Nucleation

(B) Surface Nucleation

(C) Mixed Nucleation
Impingement of conical grains result in local and long-range compressive stress within a component. Large Conical Grains also result in Surface Nodules.
Fabricating cylindrical PG components is challenging due to high anisotropy in CTE and strength. The axial and circumferential directions are coincident with the PG basal planes having very low CTE, hence limited contraction from the deposition temp. The material between has a 30X higher CTE and low strength in the radial direction. LWRHU PG Insulators below:
X-ray Tomography reveals the 3-D character of interplanar separations.

Credit: Dr. Thomas Watkins
SNS Neutron Diffraction results show significant internal compressive stress in the basal plane directions of the LWRHU insulator cylinders and caps. Note left side “tail” on peaks indicate lattice compression = microstructural impingement.

Credit: Dr. Alexandru Dan Stoica
ORNL has Extensive High Temperature Thermal Analysis Capability for Characterizing Materials Such as Pyrolytic Graphite

Simultaneous Thermal Analysis: DTA/TG/DSC

- Graphite Furnace: 2400 °C
- Hyper Flash: 1200 °C
- TA Flashline: 2500 °C
- SiC furnace: 1600 °C

Flash Thermal Diffusivity

- DSC: 1600 °C

Dual-pushrod Dilatometry

Contact: Hsin Wang
wangh2@ornl.gov
Lessons Learned

Pyrolytic Graphite exhibits unique anisotropic properties that make it an ideal insulator for many RPS thermal protection applications.

Pyrolytic Graphite is uniquely imperfect in ways that should be considered in design, production and application.

Acknowledgement

Funding provided by the National Aeronautics and Space Administration in partnership with the Department of Energy, Office of Nuclear Energy