Mitigation of 208Tl Gamma Dose from 236Pu Decay Chain via Chemical Removal of 232U and 228Th

Joshua Rhodes
Emory Colvin
Teyen Widdicombe
University of Tennessee Knoxville
Oregon State University
University of Idaho
Radioisotope Thermoelectric Generators

Generator that works off of heat that is produced from radioactive decay of ^{238}Pu. Missions are typically labeled in required W_e (electric watts).
Background: The Advanced Test Reactor

- Dwindling stockpiles.
 - New production at HFIR, but more is needed.
- Production of ^{238}Pu in the Advanced Test Reactor
 - Produced by neutron irradiation of ^{237}Np by (n,γ) reactions.
 - Undesired biproduct: ^{236}Pu from fast neutron $(n,2n)$ reactions.
 - Outer I positions result in ^{236}Pu content of ~2 ppm.
 - Higher ^{236}Pu concentrations from B positions ~ 6 ppm.
Background: Pu-236 Buildup

Reaction schemes for transmuting Np into Pu (Credit: Patent US 6896716 B1)
Background: Pu-236 Decay Chain

- Why is ^{236}Pu undesired?
 - Decay daughter ^{208}Tl.

- How do we mitigate the hazards from ^{208}Tl?
 - Material aging and chemical removal of higher decay daughters ^{232}U and ^{228}Th.

Methodology: Software and Parameters

- SCALE 6.2: ORIGEN Module
 - Ordinary Differential Equation/Bateman Equation solver.
 - Point depletion and decay calculations.
 - Capable of simulating material processing through specifying material removal between cases.
- Simulate a chemical processing procedure.
 - Material removed from reactor, allowed to age 150 days.
 - First chemical processing.
 - Material allowed to age additional period of time.
 - Second chemical processing. Identical process as first.
Methodology: Parameters to Test

- Starting ^{236}Pu Concentrations:
 - 1 ppm, 2 ppm, 4 ppm, 6 ppm, 8 ppm, 10 ppm, 12 ppm

- Processing Aging Times:
 - Initial processing at 150 days after removal from ATR.
 - Second processing after a varying time interval:
 - 1 year to 8 years.

- Decontamination Factor or Fraction Removed or Retained:
 - Chemical processing to remove uranium and thorium. All other elements retained.
 - Testing the removal fractions:
 - 97% removal
 - 99% removal
 - 99.99% removal.
 - Assume same element fraction removed for both uranium and thorium.
 - Identical process for both 1st and 2nd processing steps.
Methodology: Procedure

- Set up initial ORIGEN input with initial Pu isotopics for a given 236Pu concentration, processing times, and decontamination factors.
 - Assume 1 gram of elemental Pu.
- Run ORIGEN. Save the results.
- Repeat for each 236Pu concentration, aging time, and removal fraction.
- Desired Result: Find 236Pu concentration, removal fractions and aging time that results in:
 - Less than 1.7 microcuries 208Tl per gram of Pu.
 - 208Tl activity must not rise above 1.7 microcuries before two years after second processing. Provides two year working window.
 - Baseline comparison: Equivalent to Pu with 2 ppm 236Pu with only the initial 150 day processing for two years.
Results: 236Pu Concentration

- Higher 236Pu concentration results in higher equilibrium levels for other isotopes including 208Tl.
- 208Tl concentration doesn’t need to increase as much.
 - Leads to less time below 1.7 μCi 208Tl limit.
- Results from irradiation position in ATR.
 - Change aging time and removal fraction of U and Th to accommodate.
Results: Aging Time before 2nd Processing

- Longer aging time leads to slower rate of 208Tl increase after second processing.
- Lower 236Pu activity at time of processing.
- Resulting 208Tl concentration is lower over time.
- More time below 1.7 μCi 208Tl limit after processing.
Results: Increasing Uranium and Thorium Removal

- More ^{232}U and ^{228}Th removed.
- ^{208}Tl concentration drops to new immediate equilibrium with respect to ^{232}U.
 - ^{208}Tl has to increase more.
 - Minimize rate of increase in ^{208}Tl
 - May lead to more time below 1.7 μCi ^{208}Tl limit.
Analysis

• Summary factors of concentration, aging and rate of increase.
 • 236Pu Concentration
 • More 236Pu \rightarrow more 208Tl.
 • Second Processing Aging Time
 • Slower 208Tl increase due to lower 236Pu activity after aging.
 • Increased aging \rightarrow less 208Tl after processing.
 • Increased Removal Uranium and Thorium
 • Lower 208Tl after processing.
 • Increased removal \rightarrow less 208Tl

Which combinations stay below 1.7 μCi 208Tl limit for 2 years?
Second Reprocessing Aging Time Results

The graph illustrates the relationship between the aging time (in years) and the Pu-236 concentration (in ppm) for different removal percentages: 99.99%, 99%, and 97%. The graph shows that as the Pu-236 concentration increases, the aging time also increases. The curves for each removal percentage diverge, indicating that higher removal percentages result in longer aging times for the same concentration.
Conclusion

• Increasing removal of uranium and thorium is important.

• Chemical processing procedures that remove more uranium and thorium make plutonium with higher ^{236}Pu concentrations viable materials with respect to our ^{208}Tl.

• Higher removal of uranium and thorium also reduces the required aging time. Makes plutonium ready to use earlier. Free up storage space.

• Future Work?
 – Could more stages of chemical processing be worthwhile?
 – Vary removal between 1st and 2nd processing, or between uranium and thorium?
 – Finer time steps for second aging time?
 – Optimization necessary.
 – Still limited by willingness to allow plutonium to age for several years. Storage space needed.
Acknowledgements

- We would like to thank Dr. Steve Herring of CSNR and Brad Kirkwood of INL for their support and insight for this project.
- We would also like to thank the previous CSNR fellows that contributed to this project.
References

Questions?